
dccautomation Documentation
Release 0.1.0

Rob Galanakis

July 10, 2014

Contents

1 Usage 3
1.1 Using a Config . 3
1.2 Paired client and server . 3
1.3 Well-known server and many clients . 4

2 Writing tests that run in your application 5

3 Design 7

4 Authors 9

5 Useful API Members 11

6 Indices and tables 13

Python Module Index 15

i

ii

dccautomation Documentation, Release 0.1.0

The dccautomation library facilitates the external control or automation of any application that hosts a Python inter-
preter. This is very useful when writing automated tests or systems against a program, such as Autodesk Maya, that
does not behave like a normal Python interpreter. A client process (usually a normal Python interpreter) can connect
to a server process (the application), and have the Python interpreter execute and evaluate Python commands.

This is conceptually a simple and already served RPC mechanism, but the complications of various DCC packages
makes a package like dccautomation hugely beneficial, since it is both extensively unit and production tested.

• dccautomation on GitHub: https://github.com/rgalanakis/dccautomation

• dccautomation on Read the Docs: http://dccautomation.readthedocs.org/

• dccautomation on Travis-CI: https://travis-ci.org/rgalanakis/dccautomation

• dccautomation on Coveralls: https://coveralls.io/r/rgalanakis/dccautomation

Contents 1

http://dccautomation.readthedocs.org/en/latest/
https://github.com/rgalanakis/dccautomation
http://dccautomation.readthedocs.org/
https://travis-ci.org/rgalanakis/dccautomation
https://coveralls.io/r/rgalanakis/dccautomation

dccautomation Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Usage

Using dccautomation is very simple. First, you must create or find a config for your application. Then, you can
run the dccautomation client and server in one of two ways: with a paired client and server, or with a server
running on a well-known port.

1.1 Using a Config

Using a config (instance of the dccautomation.configs.Config class) is very simple. First, look in the
dccautomation.configs module for a configuration for your application. New configurations are added regu-
larly.

If you cannot find one there, you can subclass dccautomation.configs.Config and override the necessary
methods.

In either case, this is all the code you have to write to get automation working. You just pass this configuration around
and let dccautomation do all the work.

1.2 Paired client and server

The most common and useful way to use this library is to bootstrap a server process and pair it with its own client.
This ensures nothing else can interfere with the server (remember, the server is usually a very stateful application,
you wouldn’t want state magically changing between client calls!). This bootstrapping also allows you to have many
server instances running, because they will each be communicating over a unique port. You can do this by running in
your client process (normally a standard Python interpreter):

import dccautomation
cfg = MyAppConfig()
svrproc = dccautomation.start_server_process(cfg)
client = dccautomation.Client(svrproc)
client.exec_(’import mycode; mycode.do_stuff()’)

Using a paired client and server is most useful when doing automated testing, allowing you to run code that doesn’t
work in a normal Python interpreter. It can also be useful when doing batch processing, by starting up several instances
of the application into a worker pool.

3

dccautomation Documentation, Release 0.1.0

1.3 Well-known server and many clients

Another useful scenario is to start a server on a background thread inside of an already running application, using a
well-known port. Any number of clients can then connect to it. You can do this by running the following in your
application/server process:

import dccautomation
dccautomation.start_inproc_server(MyAppConfig(), 9023)

Then in your client process, you can run the following:

import dccautomation
client = inproc.start_inproc_client(MyAppConfig(), 9023)
client.exec(’import mycode; mycode.do_stuff()’)

Note that your client and server need to know what port to communicate on beforehand (we use 9023 in the previous
examples). This also means we can only have one server/application process running.

You can also set the DCCAUTO_INPROC_PORT environment variable to set the port (usually before launching the
process), instead of hard-coding it to a number. Do not pass in a port number, and the environment variable will be
read.

Using a well-known server and one or more clients can be useful when exploring how code works. You can open up a
GUI session of your application, start a server, run some code from the client process that manipulates the application,
and visually inspect the result afterwards.

It can also be useful when communicating between applications. You can have Maya tell your game engine to update
based on some change in Maya, and you can have Maya update based on some change in the game engine. To achieve
this, you could do something like this:

In your game engine
import dccautomation
dccautomation.start_inproc_server(GameEngineConfig(), 9024)
maya = dccautomation.start_inproc_client(MayaConfig(), 9025)
maya.exec_(’import pymel.core as pmc’)

In Maya
import dccautomation
dccautomation.start_inproc_server(MayaConfig(), 9025)
game = dccautomation.start_inproc_client(GameEngineConfig(), 9024)
game.exec_(’import leveleditor’)

4 Chapter 1. Usage

CHAPTER 2

Writing tests that run in your application

One of the major benefits of dccautomation is the dccautomation.RemoteTestCase class. You can sub-
class this class, and your test methods will run in your application. This allows you, for example, to write normal-
looking test code, and then use standard Python tools (like nosetests) to run your code. For example, you could
have the following test code:

import dccautomation, my_configs
try:

import pymel.core as pmc
except ImportError:

pmc = None

class SillyPymelTests(dccautomation.RemoteTestCase):
config = my_configs.MayaConfig

def testFindsActive(self):
jnt = pmc.joint()
self.assertEqual(jnt.type(), ’joint’)

Then, you can run the tests in whatever fashion: from your IDE, through nose or any test runner, whatever. Under
the hood, RemoteTestCase works some magic and your code is executed inside your application.

5

dccautomation Documentation, Release 0.1.0

6 Chapter 2. Writing tests that run in your application

CHAPTER 3

Design

As stated previously, conceptually dccautomation is a simple RPC system. In practice, setting up an RPC system
using applications that host Python is not trivial. They have particular startup mechanics, are slow to start up, have
special environment setups and libraries, and other considerations. Many people need to write code in these environ-
ments, but lose the benfit of modern tools or practices. If you’ve ever tried to do Test Driven Development in Maya,
you have run into these issues!

So we created dccautomation to solve the needs of:

• Write automated tests that transparently run in custom applications.

• Have a way for a pure-Python application to use a custom application for special data processing (think some-
thing like an exporter that runs in a standard Python interpreter, that when you export will open up Maya behind
the scenes to export the model).

• Parallel batch processing.

Internally, dccautomation uses PyZMQ. In the future, the protocol mechanism may be configurable, or changed
to a pure-Python mechanism, to eliminate comnpatibility issues.

7

dccautomation Documentation, Release 0.1.0

8 Chapter 3. Design

CHAPTER 4

Authors

The primary author is Rob Galanakis, rob.galanakis@gmail.com. The initial concepts of dccautomation were
developed during my time at CCP Games. I give special thanks to my former colleagues there for proving that given
the right opportunity and tools, people can improve and excel.

9

mailto:rob.galanakis@gmail.com

dccautomation Documentation, Release 0.1.0

10 Chapter 4. Authors

CHAPTER 5

Useful API Members

The dccautomation.configs module is the primary module clients will need to use. It contains the Config
base class, and a number of pre-defined subclasses for popular DCC applications and platforms. You can get a config
instance by its class name using config_by_name().

class dccautomation.configs.Config
Configuration for a controllable process.

cfgname()
Return the configuration name. Used when many configs should share the same name (such as various OS
flavors of a DCC app).

dumps(data)
Dump the data into a string and return the string (bytes). Defaults to
json.dumps(data).encode(’utf-8’).

exec_context()
Return a callable will run exec and eval. Useful if the exec and eval must occur on a certain thread.

loads(s)
Load data from a string (bytes). Defaults to json.loads(s.decode(’utf-8’)).

popen_args()
Return a list of command line arguments used to start a process and have it run an automation server.

dccautomation.configs.config_by_name(name)
Return the first config type that has a member/type name matching name.

The dccautomation.configs module also contains a number of pre-defined configs clients can use.

class dccautomation.configs.CurrentPython
The current executable. Assumed to be a valid Python interpreter.

class dccautomation.configs.SystemPython
The system python interpreter (what you’d get typing “python” from the command line).

class dccautomation.configs.Maya2015OSX

dccautomation.configs.Maya

Finally, the dccautomation.RemoteTestCase class is very useful for clients who wish to use
dccautomation to run automated tests.

class dccautomation.RemoteTestCase(methodName=’runTest’)
Subclass for test classes which should execute in the DCC process. This is sort of magical, and you can generally
stay out of it by overriding this class and some of its attributes:

•config: A subclass of dccautomation.configs.Config. Do not use an instance of it.

11

dccautomation Documentation, Release 0.1.0

•reload_test: If True, reload the test file before running each test.

•cache_client: If True, use one client for all test methods. If False, use a new client for each test. Clients
are created through the create_client() method.

•start_proc: If True, start a server process before creating the client.

•reload_modules: If supplied, reload these modules before running a test. It must be a module instance.

Most of this behavior is used in the create_client() method. Override this method for advanced usage.

12 Chapter 5. Useful API Members

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

13

dccautomation Documentation, Release 0.1.0

14 Chapter 6. Indices and tables

Python Module Index

d
dccautomation.configs, 11

15

	Usage
	Using a Config
	Paired client and server
	Well-known server and many clients

	Writing tests that run in your application
	Design
	Authors
	Useful API Members
	Indices and tables
	Python Module Index

